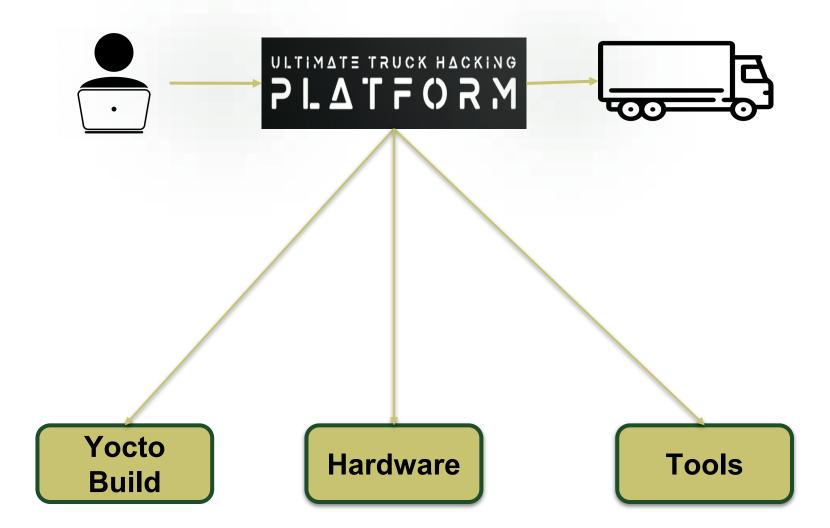
Ultimate Truck Hacking Platform

Unifying Truck Hacking Tools with the Power of Yocto Linux and BeagleBone Hardware


Dr. Jeremy Daily, Associate Professor of Systems EngineeringRik Chatterjee, Graduate Student in Systems EngineeringCarson Green, Undergraduate in Electrical and Computer Engineering

What is the UTHP ?

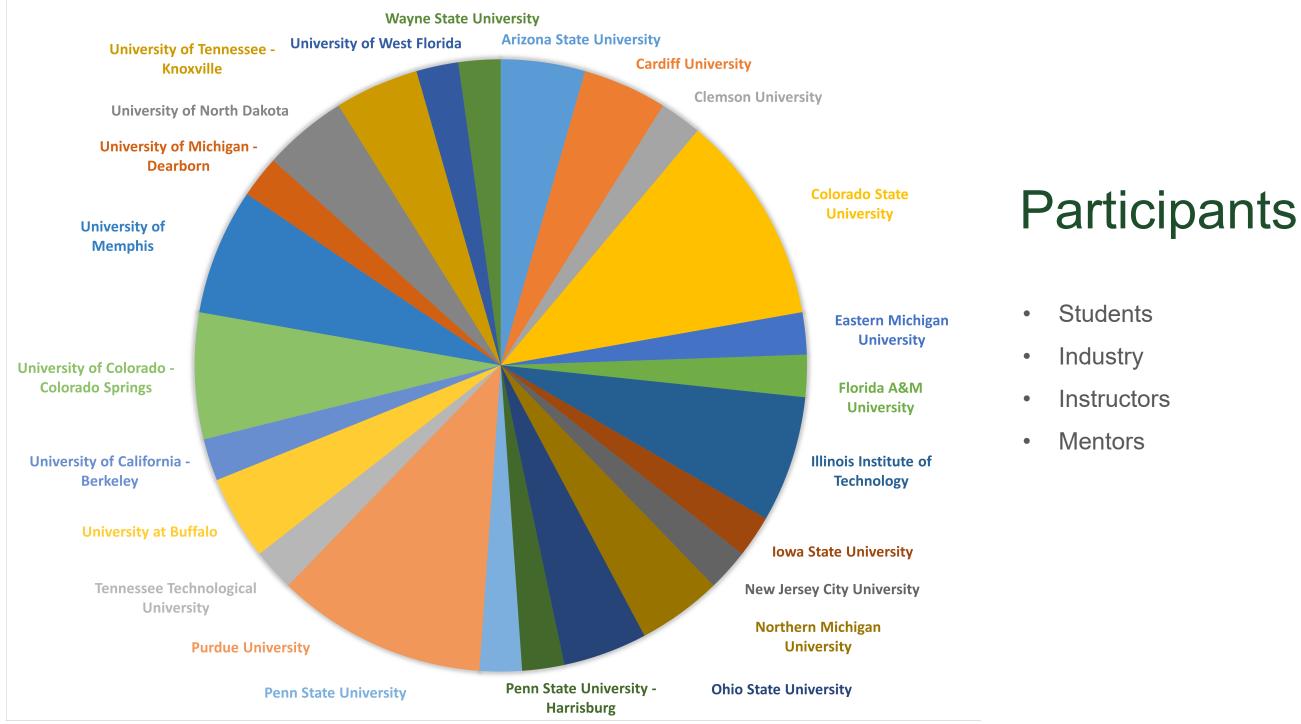
A Tool Revolutionizing Vehicle Diagnostics and Security:

- Unified Solution: Combining diverse truck hacking tools under one platform for seamless diagnostics and cybersecurity analysis.
- Yocto-based: Harnessing the flexibility of Yocto Linux to ensure adaptability and wide-ranging compatibility.
- Hardware Meets Software: Introducing a specialized BeagleBone based hardware designed to work hand-in-glove with our software build.
- Future-Proof: Regular kernel updates and platform porting to stay ahead in the fast-evolving world of vehicle technology.

Why do we need a new Platform ?

- Enhanced Vehicle Security: As trucks become more technologically advanced, the need for comprehensive security diagnostics increases. UTHP offers an all-in-one solution to identify vulnerabilities and potential threats.
- Unified Toolset: Currently, professionals and enthusiasts must juggle various tools for different diagnostic tasks. UTHP offers a centralized platform, reducing the learning curve and increasing efficiency.
- Future of Transportation: With the rise of autonomous vehicles and smart transportation, it's crucial to stay ahead of potential cyber threats. UTHP provides a foundation for future-proofi

To prevent something like this due to a cyberattack



CyberTruck Challenge

Experience to guide in the design decisions and goals.

UNIVERSITIES REPRESENTED AT THE CYBERTRUCK CHALLENGE 2023

Thank you to the CyberTruck Challenge[®] sponsors

CyberTruck Challenge 2023 Schedule Version:20230516										
	Sunday, 11 June	, Monday, 12 June		Tuesday, 13 June		Wednesday, 14 June	Thursday, 15 June	Friday, 16 June	Time	
	- -	Group A	Group B	Group A	Group B					
Before 0700		Site Closed							Before 0700	
0700-0730									0700-0730	
0730-0800		Breakfast							0730-0800	
0800-0830		Welcome // NDA		Wireless Systems	Hardware Reverse	Safety & Legal Briefing	efing	Student Team Briefs (30	0800-0830	
0830-0900		Vehicle Orientation							0830-0900	
0900-0930	Site Closed								0900-0930	
0930-1000		<u>Software RE</u>	Truck Systems and J1939		<u>Engineering</u>	Assessment	Assessment	minutes each group)	0930-1000	
1000-1030									1000-1030	
1030-1100				Cryptography					1030-1100	
1100-1130					Binary Analysis and				1100-1130	
1130-1200									1130-1200	
1200-1230		Lunch			<u>Modification</u>			Awards	1200-1230	
1230-1300							Lunch		1230-1300	
1300-1330		Binary Decompilation	Diagnostic Systems	Lunch					1300-1330	
1330-1400						Assessment	Assessment	Site Closed	1330-1400	
1400-1430				<u>Hardware Reverse</u> <u>Engineering</u>	Wireless Systems				1400-1430	
1430-1500									1430-1500	
1500-1530		Truck Systems and J1939	<u>Software RE</u>						1500-1530	
1530-1600									1530-1600	
1600-1630									1600-1630	
1630-1700 1700-1730				Binary Analysis and Modification	Cryptography				1630-1700 1700-1730	
1730-1730									1730-1730	
1730-1800	Informal Welcome Reception (offsite)	Diagnostic Systems	Binary Decompilation						1800-1830	
1830-1900									1830-1830	
1900-1930				Din	iner				1900-1930	
1930-2000		Dinner				Dinner			1930-2000	
2000-2030		Dinner Presentation: Dr. Bratus		Dinner Presentation: Trucking Industry		Assessment	Free		2000-2030	
2030-2100				Assessment Preparation					2030-2100	
2100-2130	Site Closed	Free							2100-2130	
2130-2200									2130-2200	
After 2200		Site Closed						After 2200		
		1 6		*0		*0				

What's it like?

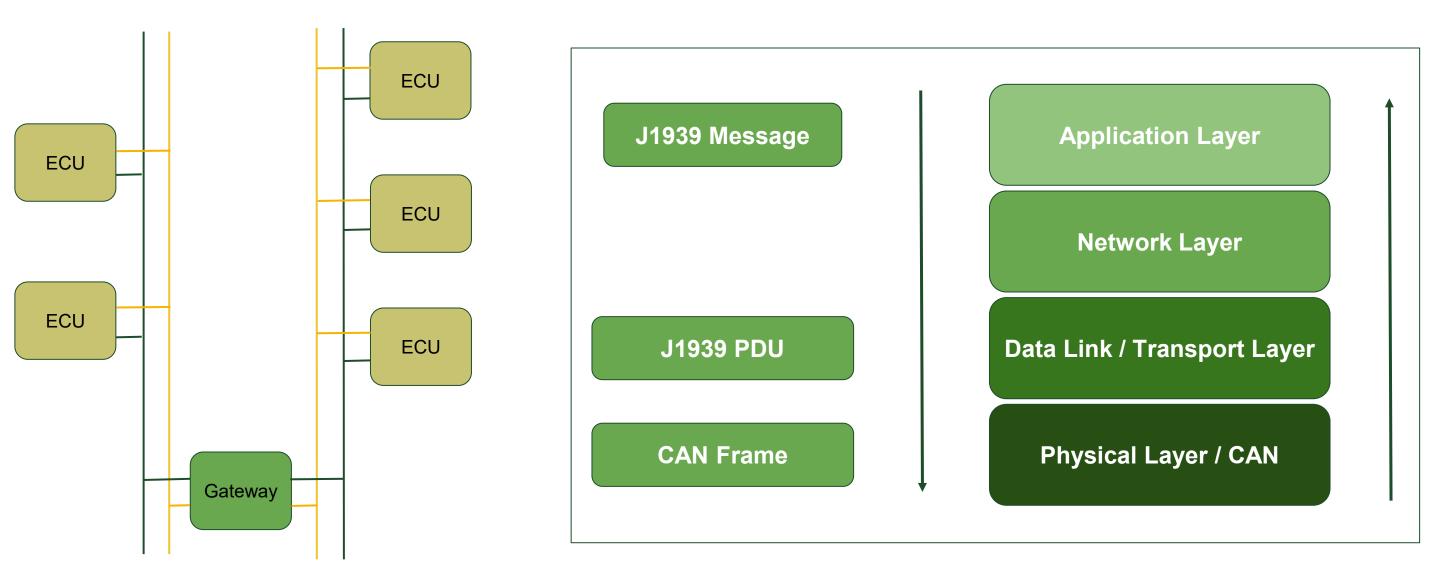
.

• • • • • • • • • • •

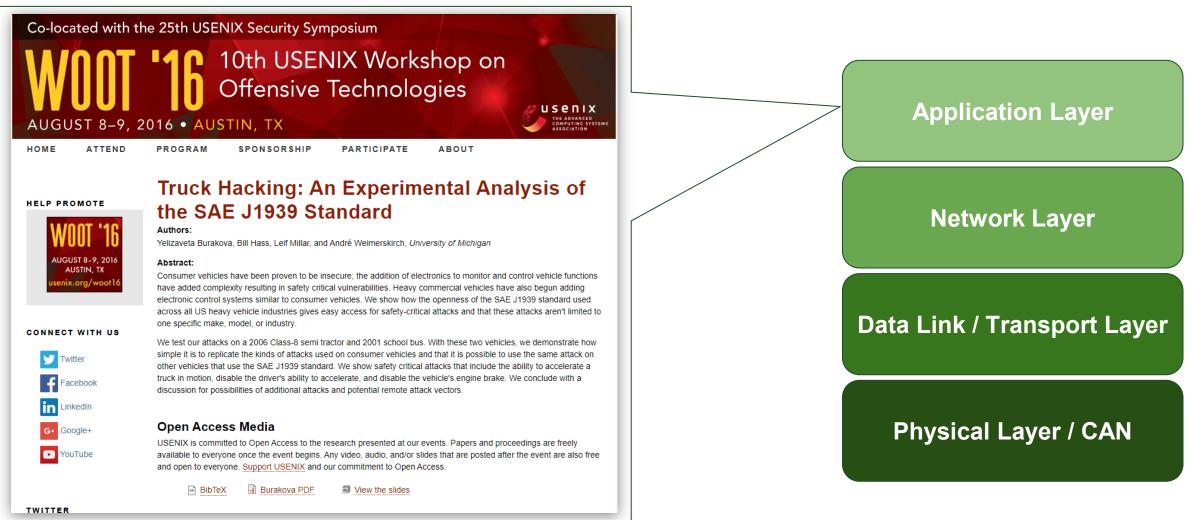
.

.

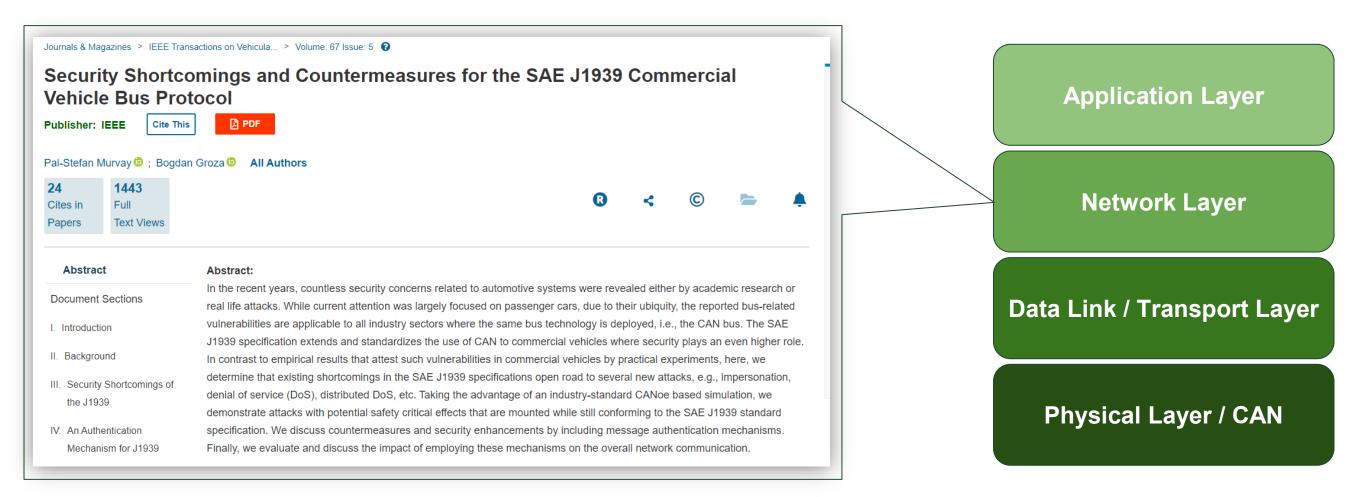
Ultimate Truck Hacking Platform


.

Brings together useful hardware, tools, and operating systems for a complete, low-cost system for education, training, research and assessments for cybersecurity of heavy vehicles across multiple networking layers in the system.


Colorado State University

Truck Networks



Cybersecurity Threats in Commercial Vehicles

Cybersecurity Threats in Commercial Vehicles

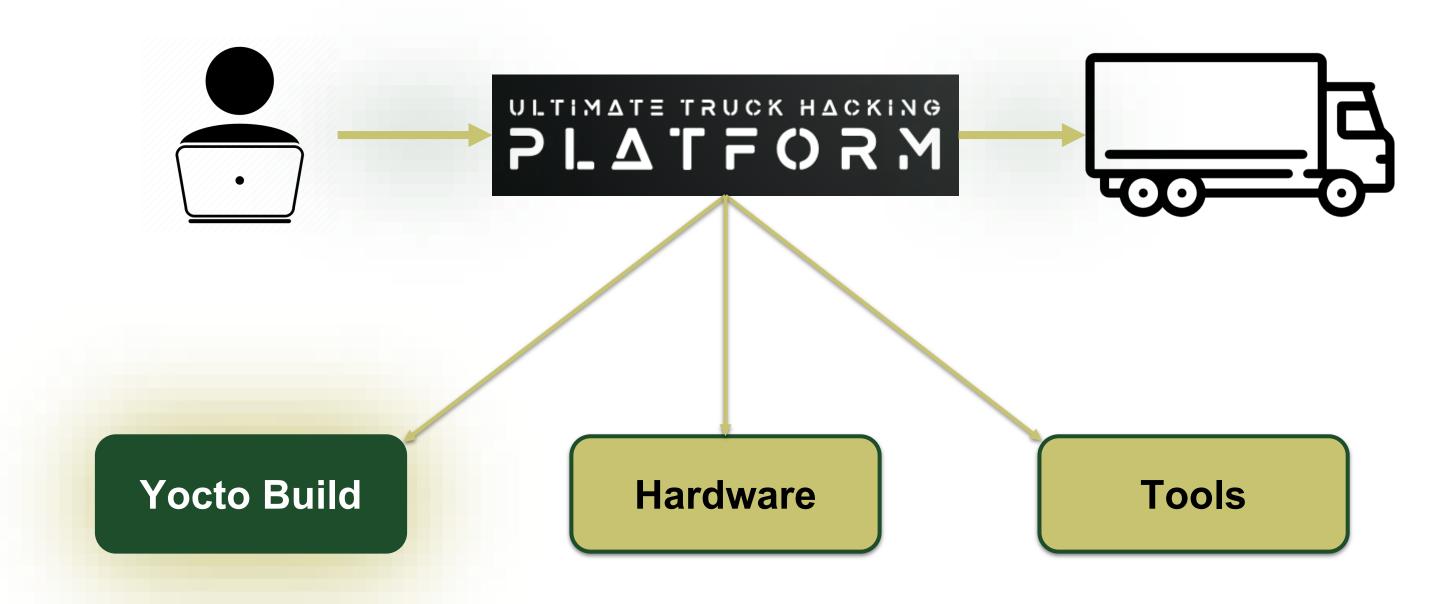
Cybersecurity Threats in Commercial Vehicles

Q

2024 Submissions

About 2024 Symposium 2023 Symposium Previous Events

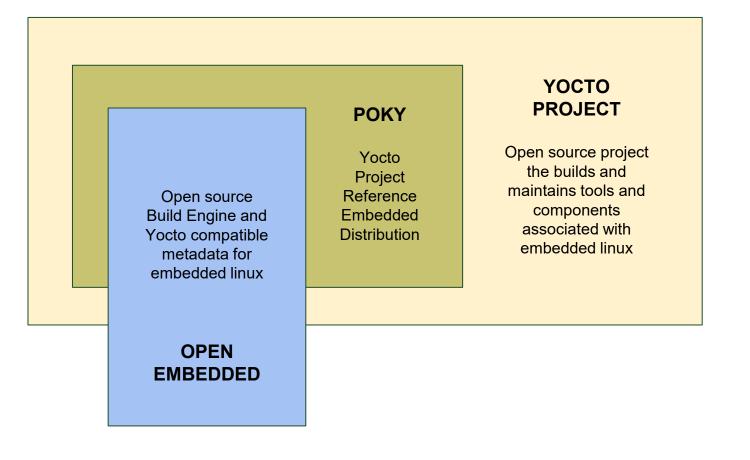
Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

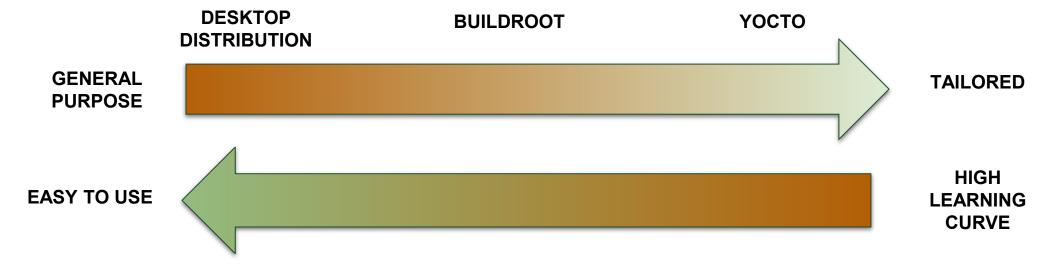

Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Modern vehicles are equipped with embedded computers that utilize standard protocols for internal communication. The SAE J1939 protocols running on top of the Controller Area Network (CAN) protocol is the primary choice of internal communication for embedded computers in medium and heavy-duty vehicles. This paper presents five different cases in which potential shortcomings of the SAE J1939 standards are exploited to launch attacks on in-vehicle computers that constitute SAE J1939 networks.

In the first two of these scenarios, we validate the previously proposed attack hypothesis on more comprehensive testing setups. In the later three of these scenarios, we present newer attack vectors that can be executed on bench test setups and deployed SAE J1939 networks. For the purpose of demonstration, we use bench-level test systems with real electronic control units connected to a CAN bus. Additional testing was conducted on a 2014 Kenworth T270 Class 6 truck under both stationary and driving conditions. Test results show how protocol attacks can target specific ECUs. These attacks should be considered by engineers and programmers implementing the J1939 protocol stack in their communications subsystem.

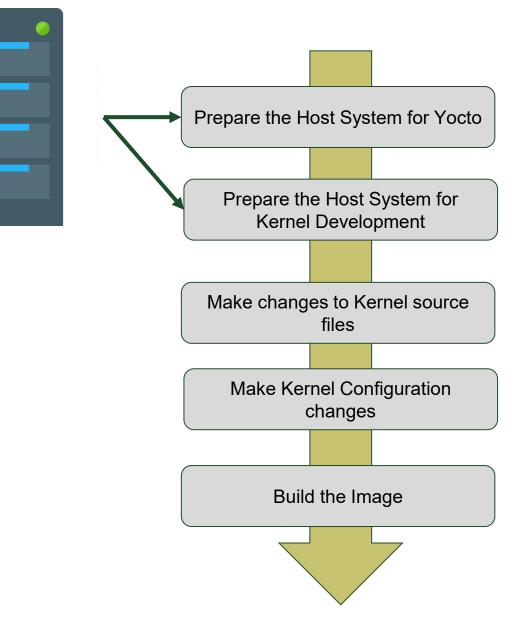
Application Layer Network Layer Data Link / Transport Layer **Physical Layer / CAN**

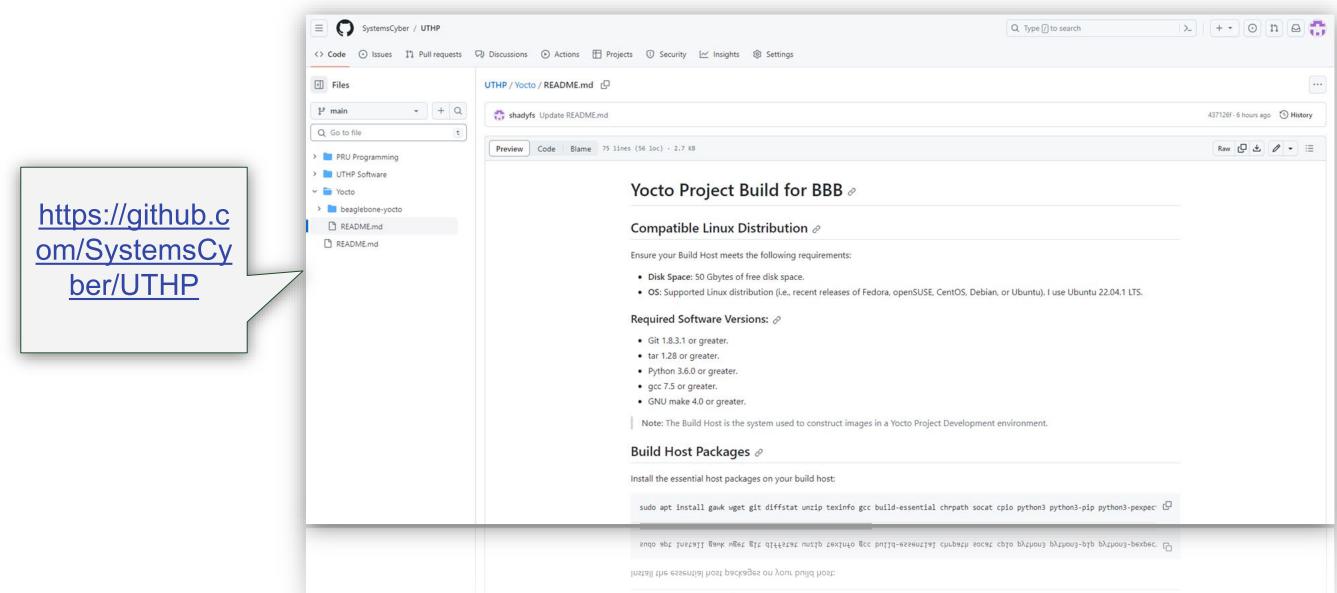

Paper


What is Yocto ?

- Definition: Yocto is a collaborative project that provides templates, tools, and methods to create custom Linux-based systems for embedded products.
- OpenEmbedded Build System: Utilizes the OpenEmbedded build framework, which comprises a collection of "recipes" detailing how software components are compiled and integrated.
- Layered Approach: Organizes functionalities in layers, allowing for better modularity and separation of concerns.
- Not Just Another Distribution: Yocto isn't a Linux distribution itself but a toolkit to develop distributions tailored for specific needs.
- Backed by the Linux Foundation: Ensuring consistent development and maintenance backed by industry professionals.

Why Choose Yocto ?


- Customized Linux Systems: Yocto crafts a tailor-made OS, optimized for specific needs and hardware architectures.
- Layer Model: Yocto's flexible layering system, allows developers to add or remove functionalities as needed.
- Rich Ecosystem: A vast network of available layers and configurations on the net accelerates development, especially with layers designed by board founders and manufacturers.
- Complete Granularity: Beyond just generating full system images, Yocto offers granularity in generating bootloader, kernel, filesystem, and toolchain, ensuring every component is precisely as intended.
- Learning Curve vs. Flexibility: While Yocto has a steeper learning curve, its power and flexibility are unparalleled. When a project requires in-depth customization, particularly for embedded systems aiming for efficiency, Yocto is often the optimal choice.
- Comparative Advantage: Compared to desktop distributions, Yocto is more tailored for specific product goals, especially when lightness, speed, and ultra-customization are priorities. While Buildroot offers simplicity, Yocto provides a broader spectrum of packages and capabilities.



Building with Yocto for UTHP

- Install Essential Packages: Tools and dependencies for Yocto.
- Clone Poky Repository: The heart of the Yocto Project.
- Navigate to Poky Directory: View and choose the relevant branch.
- Checkout 'kirkstone' Branch: The designated release for our project.
- Initialize Build Environment: Using oe-init-build-env within the 'poky' directory.
- Review & Modify 'local.conf': Adapt configurations to your project needs.
- Execute BitBake: Kickstarts the entire build process.
- Monitor Build Progress: Track the construction of your custom Linux distribution.
- Flash the image to the Beaglebone: Use 'dd' or and other tool.

Building with Yocto for UTHP

The Yocto Built: Is It Complete ?

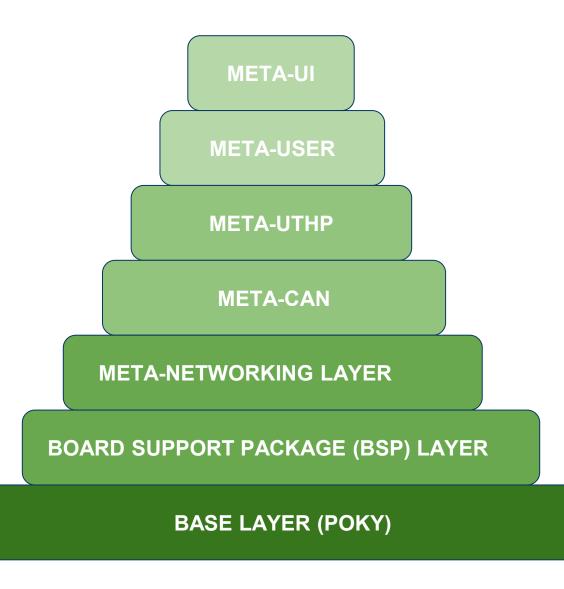
ALSA: Restoring mixer settings... alsa-lib ../../alsa-lib-1.2.6.1/src/ucm/main.c:1412:(snd_use_case_mgr_open) error: failed to impor t hw:0 use case configuration -2 No state is present for card Black alsa-lib ../../alsa-lib-1.2.6.1/src/ucm/main.c:1412:(snd use case mgr open) error: failed to impor t hw:0 use case configuration -2 Found hardware: "simple-card" "" "" "" "" Hardware is initialized using a generic method No state is present for card Black Configuring packages on first boot.... (This may take several minutes. Please do not power off the machine.) Running postinst /etc/rpm-postinsts/100-sysvinit-inittab... update-rc.d: /etc/init.d/run-postinsts exists during rc.d purge (continuing) Removing any system startup links for run-postinsts ... /etc/rcS.d/S99run-postinsts INIT: Entering runlevel: 5 Configuring network interfaces... cpsw-switch 4a100000.switch: starting ndev. mode: dual_mac SMSC LAN8710/LAN8720 4a101000.mdio:00: attached PHY driver (mii_bus:phy_addr=4a101000.mdio:00, irq=PO LL) udhcpc: started, v1.35.0 udhcpc: broadcasting discover udhcpc: broadcasting discover udhcpc: broadcasting discover udhcpc: no lease, forking to background done. Starting system message bus: dbus. Starting rpcbind daemon...done. Starting bluetooth: bluetoothd. Starting syslogd/klogd: done * Starting Avahi mDNS/DNS-SD Daemon: avahi-daemon ...done. Starting Telephony daemon Starting Linux NFC daemon Poky (Yocto Project Reference Distro) 4.0.12 beaglebone-yocto /dev/ttyS0 beaglebone-yocto login: root root@beaglebone-yocto:~# ifconfig eth0 Link encap:Ethernet HWaddr 3C:E4:B0:D6:5A:CF UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) lo

Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:11 errors:0 dropped:0 overruns:0 frame:0 TX packets:11 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1696 (1.6 KiB) TX bytes:1696 (1.6 KiB)

root@beaglebone-yocto:~#

root@beaglebone-yocto:~#

RX packets:11 errors:0 dropped:0 overruns:0 frame:0 TX packets:11 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1696 (1.6 KiB) TX bytes:1696 (1.6 KiB)


Customizing the build: Recipes & Layers

► Recipes:

- Individual instructions for building software components.
- Specify source location, dependencies, and installation procedure.
- ► Layers:
 - Collections of related recipes and configurations.
 - Provide structure and modularity to the build process.
- ➤ Importance:
 - Easily add or remove software components.
 - Separate customizations or configurations.
 - Maintain third-party software, hardware adaptations, or proprietary software.

meta-<layer-name>

- |---- recipes-<category>
 - |---- <recipe-name>
 - |---- <recipe-name>.bb

Customizing the build: Adding CAN

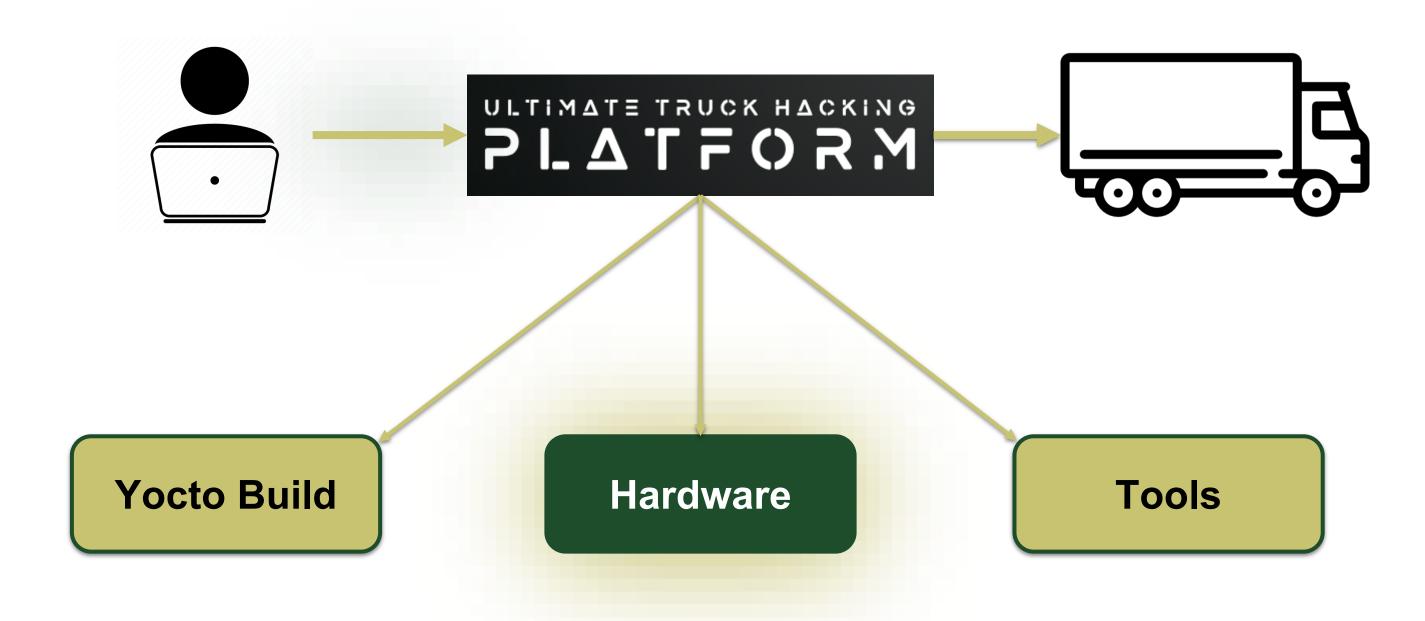
- ➤ Kernel Recipe Append Creation:
 - Create an append recipe specific for CAN: linuxyocto 5.15-can.bbappend.
- ➢ Specify Custom Configuration:
 - Add configurations in a separate can-support.cfg.
 - CONFIG_CAN=y
 - CONFIG_CAN_RAW=y
 - CONFIG_CAN_BCM=y
- ➢ Update Kernel Append Recipe for CAN:
 - Extend SRC_URI to include can-support.cfg.
- ▶ Integrate CAN-Utils:
 - Update image recipe: to include "can-utils"

Customizing the build: USB ETHERNET

- ➤ Kernel Recipe Append Creation:
 - Name:linux-yocto_5.15-usb.bbappend.
 - Purpose: Enable USB gadget features.
- ➤ Specify Custom Configuration:
 - Configuration Details:
 - CONFIG_USB_ETH=y
 - CONFIG_USB_G_NCM=m
 - CONFIG USB MASS STORAGE=y
- ➢ Update Kernel Append Recipe:
 - Extend SRC_URI to include usb.cfg.
- ➤ Network Configuration:
 - Define static IP for USB Ethernet.
 - Update /etc/systemd/network/usb0.network on BeagleBone's root filesystem.
- ➤ Host Configuration:
 - Manually set IP for the new network connection.

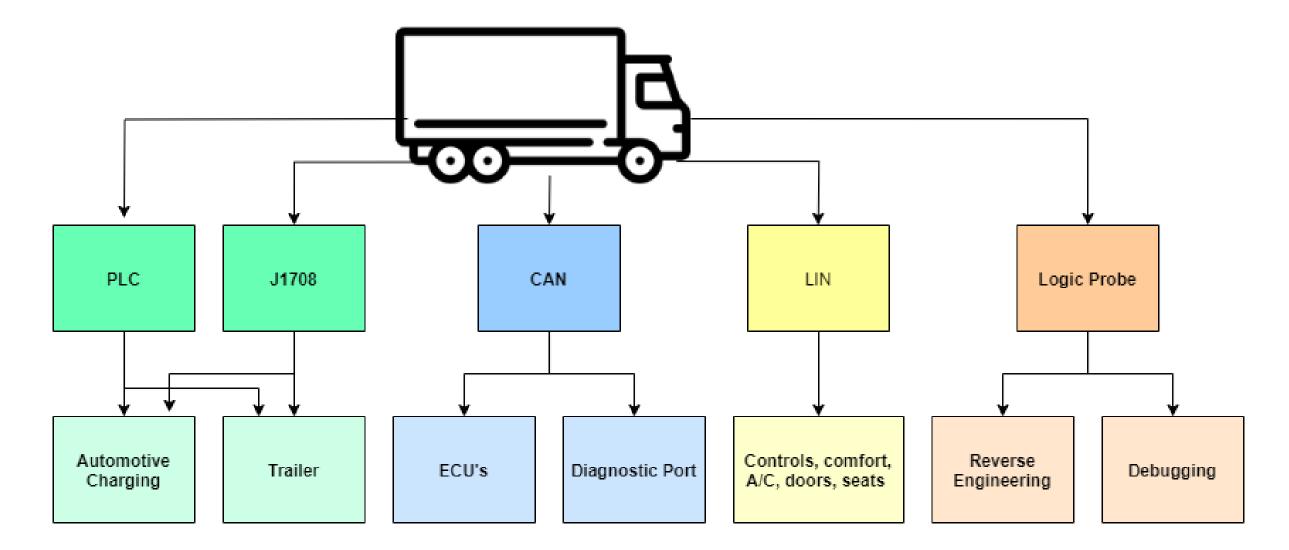
Customizing the build: Adding J1939

- ➤ Kernel Recipe Append Creation:
 - Create a J1939 specific append:
 - linux-yocto_5.15-j1939.bbappend.
- ➤ Specify Custom Configuration:
 - Define in j1939-support.cfg.
 - CONFIG_CAN_J1939=y
- Update Kernel Append Recipe for J1939:
 - Extend SRC_URI to include j1939-support.cfg.

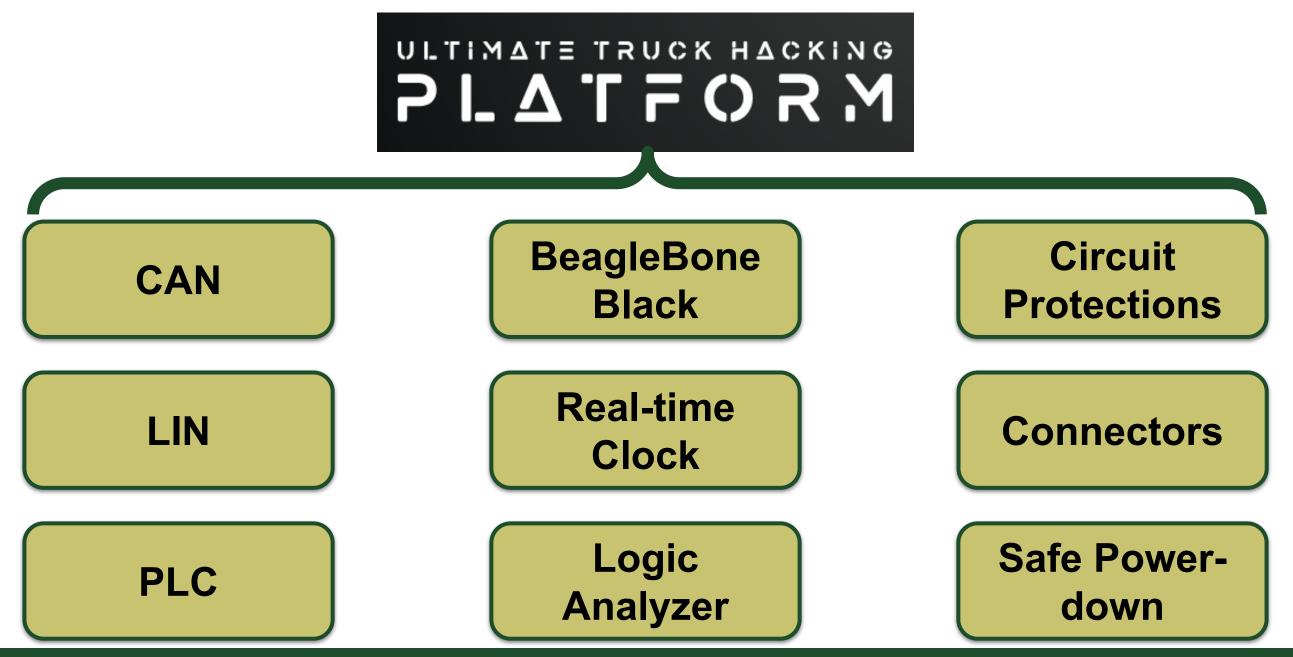

Current Status

- ➤ USB Ethernet Integration:
 - Kernel Configuration: Successfully added and enabled.
 - Image Recipe: usbinit integrated.
 - Connectivity: Confirmed stable USB Ethernet connection via SSH.
- ➤ CAN Protocol Integration:
 - Kernel Configuration: CAN support enabled.
 - Image Recipe: can-utils integrated and functioning.
 - Communication: Successful test transmission and reception on CAN bus.
- ➤ J1939 Protocol Integration:
 - Kernel Configuration: J1939 support enabled.
 - Image Recipe: J1939 utilities and tools integrated.
 - Protocol Testing: Successful J 1939 communication verified.

rik@rik-pc:~/Documents/poky/build\$ ping 192.168.7.2 PING 192.168.7.2 (192.168.7.2) 56(84) bytes of data. 64 bytes from 192.168.7.2: icmp_seq=1 ttl=64 time=0.761 ms 64 bytes from 192.168.7.2: icmp_seq=2 ttl=64 time=0.354 ms 64 bytes from 192.168.7.2: icmp_seq=3 ttl=64 time=0.328 ms 64 bytes from 192.168.7.2: icmp_seq=4 ttl=64 time=0.313 ms 64 bytes from 192.168.7.2: icmp_seq=5 ttl=64 time=0.404 ms 64 bytes from 192.168.7.2: icmp_seq=6 ttl=64 time=0.301 ms 64 bytes from 192.168.7.2: icmp seq=7 ttl=64 time=0.283 ms 64 bytes from 192.168.7.2: icmp_seq=8 ttl=64 time=0.366 ms 64 bytes from 192.168.7.2: icmp_seq=9 ttl=64 time=0.224 ms -- 192.168.7.2 ping statistics --packets transmitted, 9 received, 0% packet loss, time 8182ms rtt min/avg/max/mdev = 0.224/0.370/0.761/0.146 ms rik@rik-pc:~/Documents/poky/build\$ ssh root@192.168.7.2 WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! Someone could be eavesdropping on you right now (man-in-the-middle attack)! It is also possible that a host key has just been changed. The fingerprint for the ED25519 key sent by the remote host is SHA256:dHLs+mFnjyelNQn6EX0HT7c+ovp1+00xJNsCJbbe4zE. Please contact your system administrator. Add correct host key in /home/rik/.ssh/known_hosts to get rid of this message. Offending ECDSA key in /home/rik/.ssh/known_hosts:2 remove with: ssh-keygen -f "/home/rik/.ssh/known hosts" -R "192.168.7.2" Host key for 192.168.7.2 has changed and you have requested strict checking. Host key verification failed. rik@rik-pc:~/Documents/poky/build\$ sudo rm -rf /home/rik/.ssh/known_hosts rik@rik-pc:~/Documents/poky/build\$ ssh root@192.168.7.2 The authenticity of host '192.168.7.2 (192.168.7.2)' can't be established. ED25519 key fingerprint is SHA256:dHLs+mFnjyelNQn6EX0HT7c+ovp1+O0xJNsCJbbe4zE. This key is not known by any other names Are you sure you want to continue connecting (yes/no/[fingerprint])? yes Warning: Permanently added '192.168.7.2' (ED25519) to the list of known hosts. Last login: Fri Mar 9 12:35:39 2018 root@beaglebone-yocto:~#

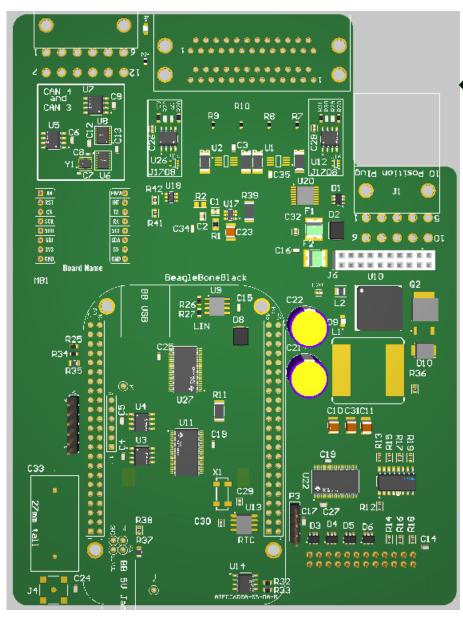

circle control co

Colorado State University



Truck Networks

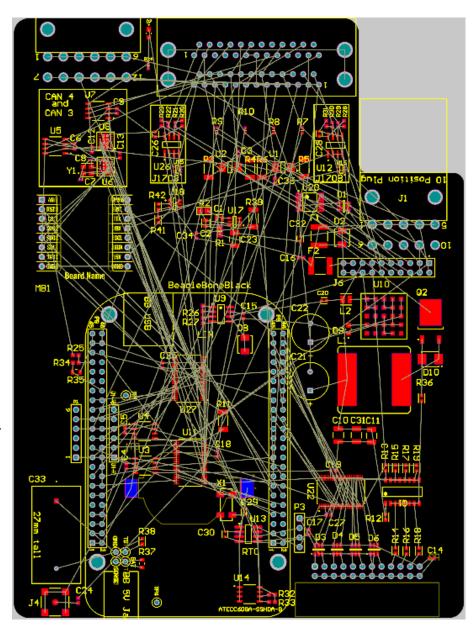
Hardware Overview



BeagleBone Black

- It's better than a Raspberry Pi for our application
- ➤ SBC for embedded systems and projects
- Specs: 1GHz ARM Cortex-A8, 512MB RAM, 4GB eMMC
 - Two CAN controllers inside
 - Two programmable real-time units (PRU)
 - Ample I/O (92 GPIO pins)
- Affordable, versatile, onboard storage, community support
- Used, verified, and tested in previous designs

UTHP PCB

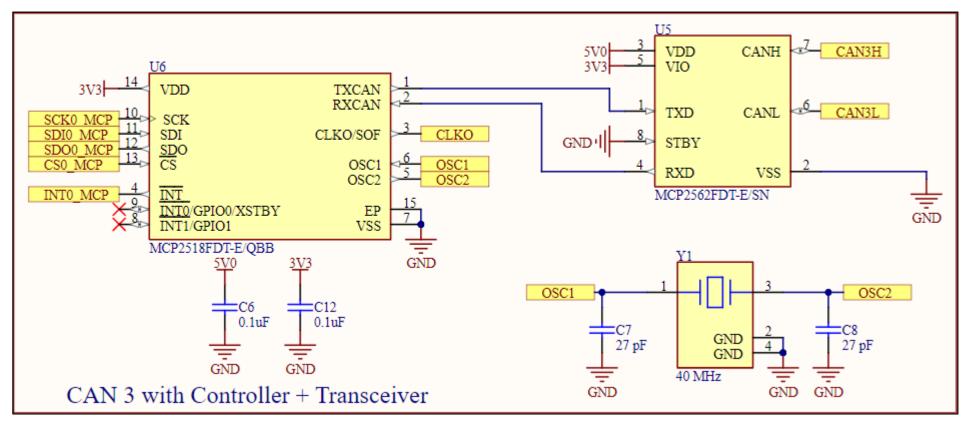


Left: 3D view of the PCB layout showing component locations, beaglebone placement, and connector configurations.

Right: PCB layout of components.

NOTE: Designs shown are preliminary and are subject to change. The images seen are current as of October 19, 2023.

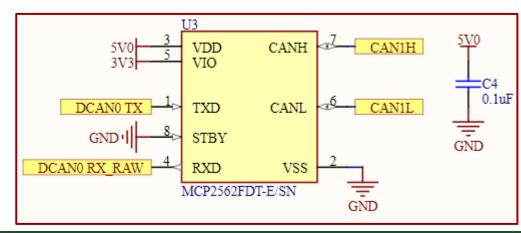
Controller Area Network (CAN)

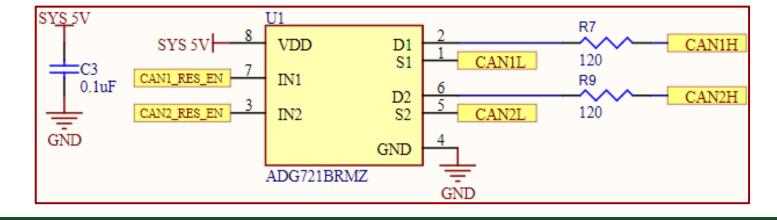

MCP2518FD

Controller

- ➤ Requirement: J1939 supported
- \succ The UTHP contains:
 - \circ (4x) MCP2562FD CAN Transceivers
 - (2x) MCP2518FD CAN Controllers with external oscillator
 - \circ (2x) 120 Ohm terminating resistor enable / disable switches
- Added 2 extra CAN interfaces to the BeagleBone
- Multiple connector interfaces

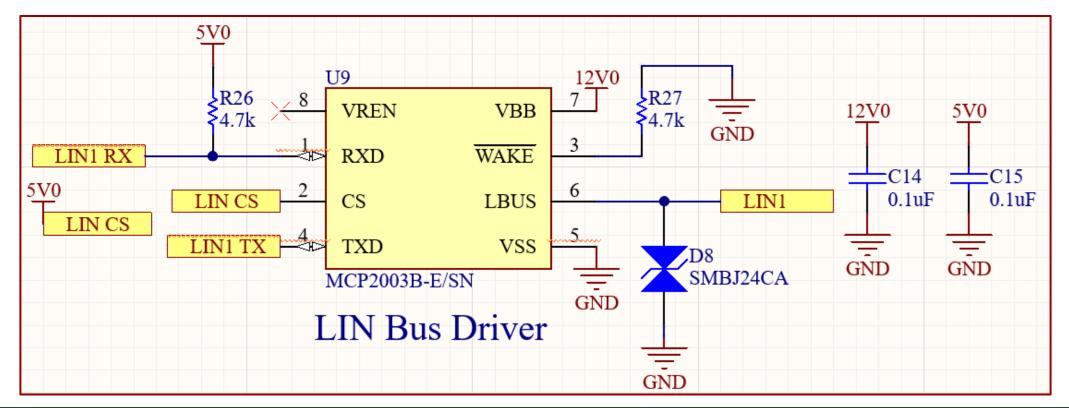
Transceivers

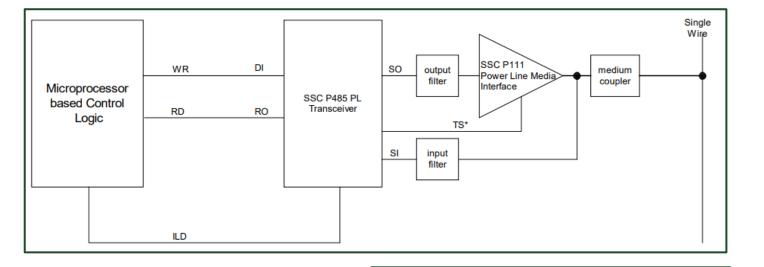

CAN Schematics



Left: MCP2518 CAN controller with a 40 MHz external oscillator, decoupling capacitors, and connections to the MCP2562FD CAN transceiver.

Bottom Left: MCP2562 transceiver circuit with decoupling capacitor.


Bottom Right: Single-pole singlethrow switch allowing for enabling or disabling the 120 ohm terminating resistor.


Local Interconnect Network (LIN)

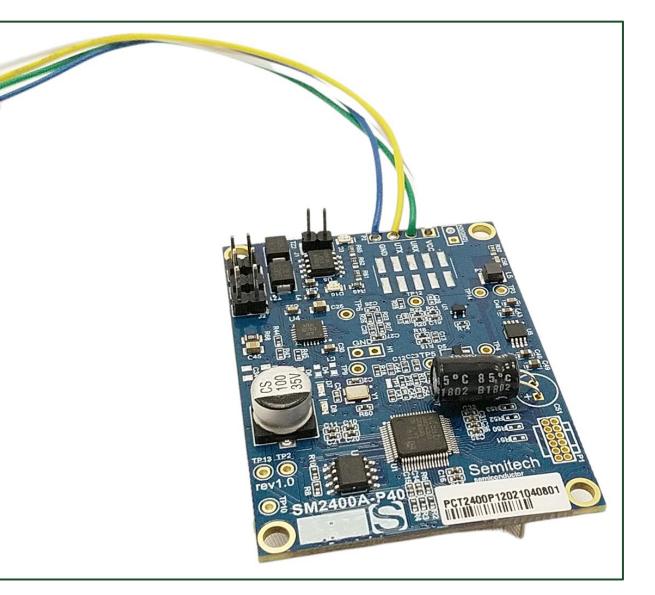
- ► Requirement: J1708/J1587 supported
- ► LIN implementation uses the MCP2003B chip
 - Stand-alone transceiver
 - Transient protection capacitors

Power Line Communication (PLC)

Above: Intellon SSC P485 typical application for PLC connection. Block diagram shows microcontroller, SSC P485 transceiver, filtering and signal conditioning, and coupler.

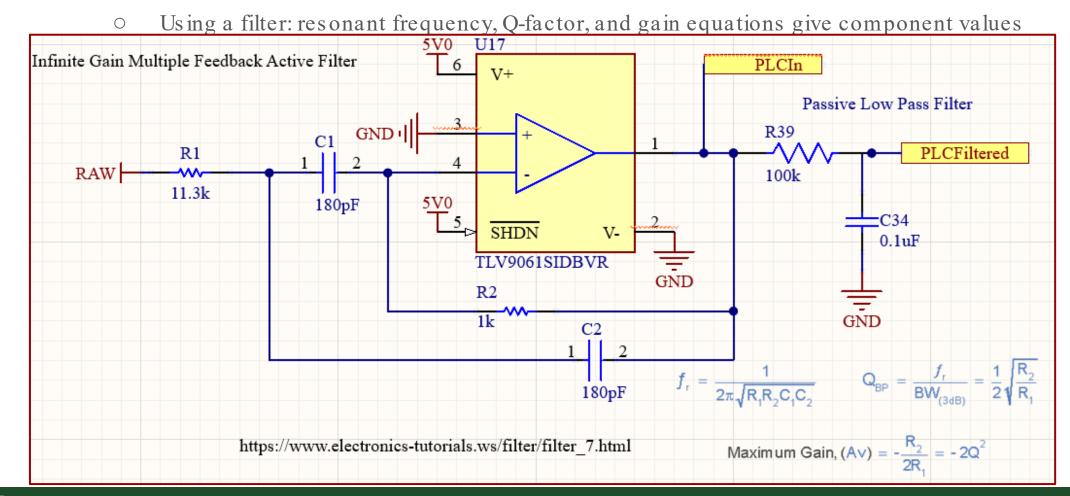
Right: Pinout of the 20-pin Intellon SSC P485.

Images from source: https://datasheetspdf.com/pdffile/476676/ETC/P485/


4MHZ	1 20	
NC	2 19	TP0
	3 18	
XIN 🗌	4 17	SI
XOUT	5 SSC 16	C1
	6 P485 ¹⁵	C 2
ILD	7 14	SO
DI	8 13	VSSA
RO	9 12	RST*
WL 🛛	10 11	∎ TS*

> 1st Option: Intellon SSC P485

- 20-pin spread-spectrum carrier transceiver IC
- Not in production, but able to purchase and documentation still available
- Needs additional design work + hardware to implement
- Cheapest option available
- Build breakout board to test
- ➢ PLC4TRUCKS resources
 - <u>https://github.com/TruckHacking/plc4trucksduck</u>
 - <u>https://nmfta.org/wp-</u> content/media/2022/11/Power_Line_Truck_Hacking
 <u>2TOOLS4PLC4TRUCKS.pdf</u>

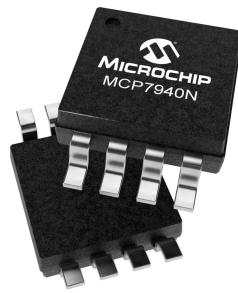

Power Line Communication (PLC)

- > 2nd Option: Semitech SM2400 PLC Module
 - Plug N' Play : 4 pin connector
 - UART interface
 - Optional SPI / RS485 interfaces
 - Need to perform testing to compare against the Intellon SSC P485
 - Application notes, reference designs and software available as resources from the manufacturer
 - \circ Not cost-friendly at ~\$100 per unit

Power Line Communication (PLC)

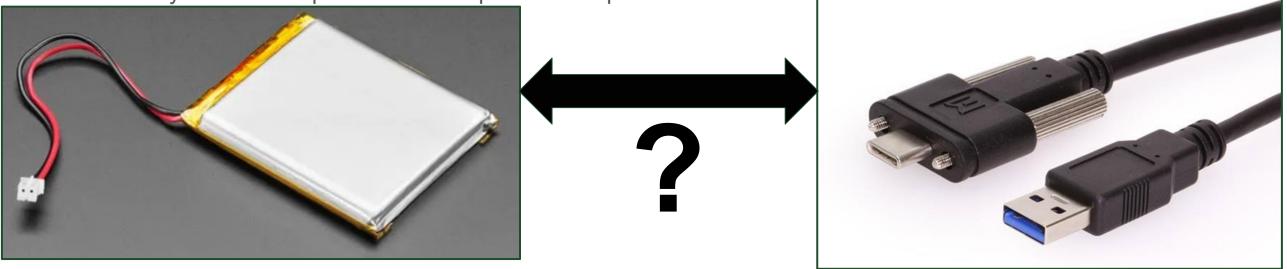
- ➢ 3rd Option: Build our own "transceiver"
 - Design process and schematic shown below
 - Only able to perform amplitude shift keying (preamble), but not phase-shift keying

Left: Active band-pass filter design with corresponding equations from <u>https://www.electronics-</u> <u>tutorials.ws/filter/filter_7.html</u>.


J1708 / J1587

- ➢ Requirement: J1708 / J1587 supported
- > Combination of inverters, resistors and transceiver capable of handling J1708 traffic
 - THVD1410DR transceiver has built-in ESD protection, low power consumption, bus failsafes and noise rejection
- ➤ Two J1708 / J1587 circuits
 - Seen below with decoupling capacitor
 - Connected to multiple output connectors

Real-Time Clock + Security Chip

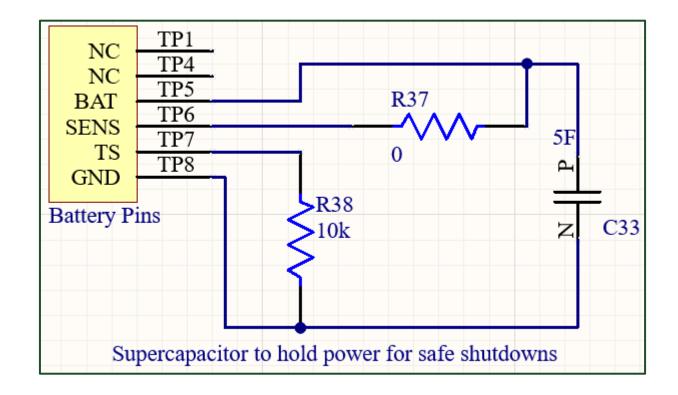

https://www.microchip.com/en-us/product/atecc608a

https://www.microchip.com/en-us/product/mcp7940n

ATECC608A Security Module	MCP7940N Real Time Clock (RTC)
I2C communication	I2C communication
Secure boot support	Hours, Minutes, Seconds, Day of Week, Day, Month and Year
Hardware-based key storage	Battery-powered time keeping
Educational feature	Low-power
Future work of number generation	Timestamp when switching to battery

Safe Power-Down

- BeagleBone would often come unplugged from power / USB
- ➤ Led to issues with OS image would become corrupted
 - Led to non-operational state for BeagleBone
 - Have to re-flash SD card and BeagleBone
 - If corruption happened enough times, BeagleBone doesn't work anymore
- Need a way to maintain power for short period after power loss and shut down properly.



https://learn.adafruit.com/li-ion-and-lipoly-batteries/voltages

https://www.digikey.com/en/products/detail/coolgear/CG-30SL1AC-1M/16384571

Safe Power-Down

> Found BeagleBone "test points" for battery > connected large capacitor (5F) to store charge > developed script

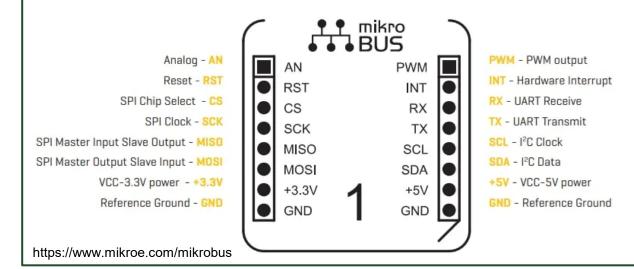
Above: Circuit schematic containing capacitor for BeagleBone safe power-down.

Above: Supercapacitor circuit addition close-up view on TruckCape V4. The circuit contains a 5F capacitor, 10k resistor, and a small board used for connecting components.

Right: TruckCape V4 board design showing scale of supercapacitor addition to the device.

Safe Power-Down

mport time

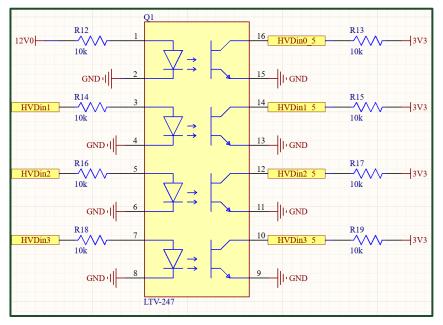

```
import os
import subprocess
import logging
logging.basicConfig(filename="power_log.log", filemode='a', format='%(asctime)s - %(message)s', level=logging.INFO)
def read i2c status():
    result = subprocess.check_output("i2cget -y -f 0 0x24 0xA", shell=True)
    return result.strip()
def shutdown(status):
    logging.info('Initiating shutdown due to switch to battery power.')
    logging.info('status: %s', status)
    ret=subprocess.call(["shutdown", "-h", "now"])
    if ret == 0:
        with open('/home/debian/log.log', 'a') as f:
            f.write("shutting down\n")
def check_power_source():
    trv:
        status = read_i2c_status()
        logging.info('status: %s', status)
        if status == b'0x80':
            shutdown(status)
        else:
            time.sleep(1)
            check power source()
    except Exception as e:
        logging.error('An error occurred: %s', str(e))
def main():
    logging.info('Power check script started.')
    check power source()
if __name__ == "__main__":
    main()
```

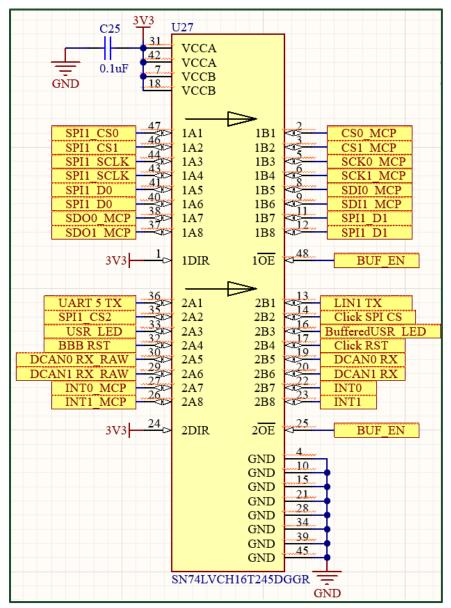
- ➤ Created a service:
 - OS runs the service in the background
 - Polling register on the power-management chip onboard the BeagleBone
 - TPS65217C chip, status being read over I2C
 - Register 0x24
 - Status 0x80 shows power has switched to "battery" (supercapacitor)
- If 0x80 is seen, run the command "shutdown -h now"
 - This turns of the BeagleBone properly, without corrupting the image
- ➤ Tested in the lab and on our research truck
 - Success!

Connectors

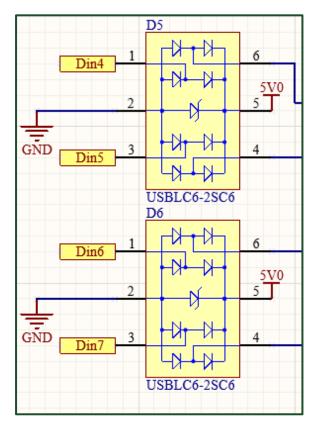
- ➢ Banana jacks coming soon
 - Externally accessible
 - CAN, LIN, J1708
 - 3.3V, 5V, 12V, GND
- ➤ Deutsch 9
 - Custom cable connected to UTHP via Molex 10-position header
- ➢ PWM connector
 - Output signals with configurable duty cycles
 - Sensor simulation, driving external circuitry, etc...

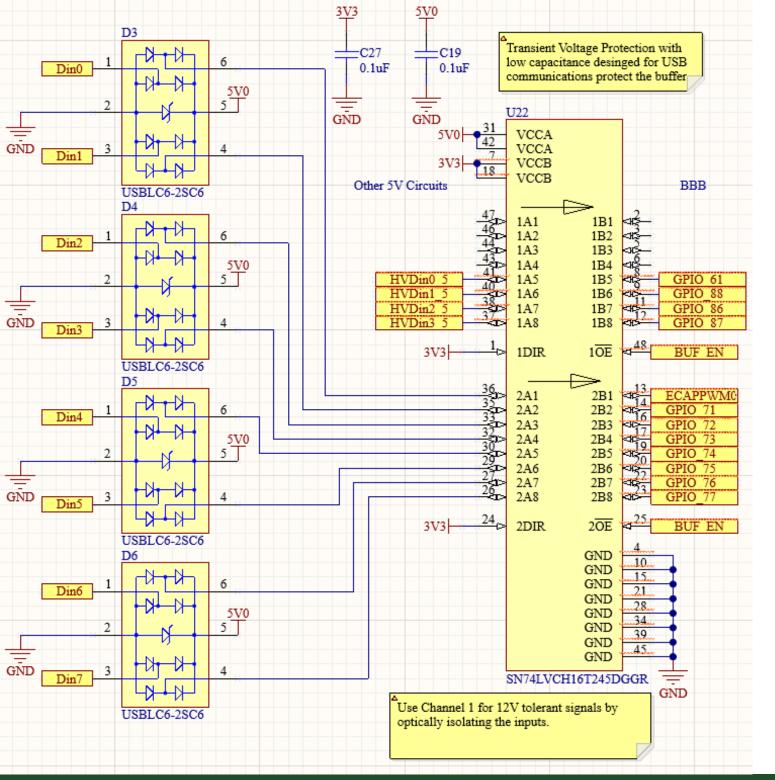
Right: MikroeClick connector interface allowing for modular additions to the UTHP.


Above: DB9 cable for representation of the 9-pin UTHP connector


Above: Double-stacked DSUB-25 connector.

Circuit Protections

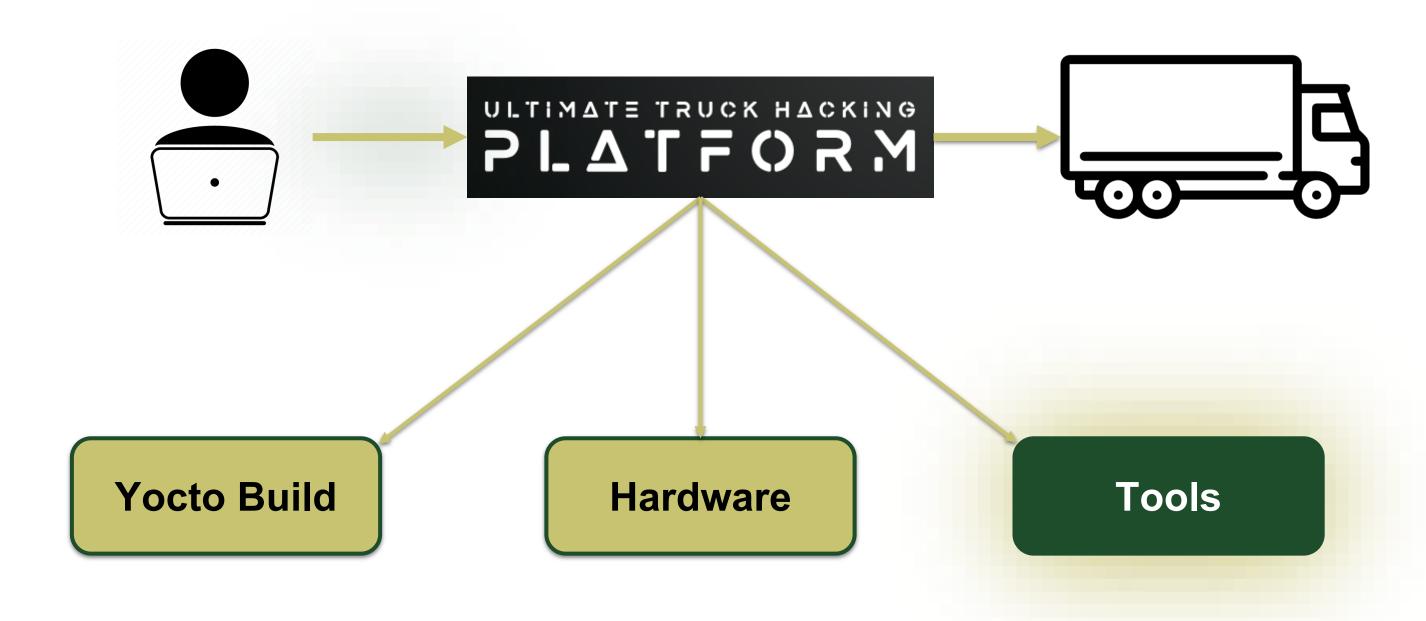

- Protect the BeagleBone during Boot
- LTV-247 Optoisolators for higher-voltage
- SN74LVCH16 transceivers / translators
 - Buffering BeagleBone GPIO pins
- Bi-directional ESD protection for logic inputs
- Numerous decoupling capacitors


Above: Optoisolator for higher-voltage inputs.

Above: Buffer used for BeagleBone GPIO pins.

Above: ESD protection IC's for digital inputs.

Logic Analyzer


- 12-inputs connected through ESD protections > buffer > BeagleBone
 GPIO pins
- ➢ Utilizes SN74LVCH16 buffer
- > 24 pin header interface:
 - 12 pins grounded
 - 4 high voltage pins
 - 8 pins for 0-<u>5V loaic</u>

Left: Current logic analysis circuit implementation for the UTHP.

Right: Wurth 24-pin header for logic analysis.

Tools / Software (In the Works)

Recipes are being built for the following tools for the UTHP:

- Cmap
- Scapy
- Python-can-j1939
- TruckDevil
- CanCat
- Py-hv-networks
- Plc4trucksduck
- Pretty_j1939
- Pretty_j1587

- Sigrok
- Can2 Decoder
- Canmatrix
- Ipython3
- Tmux
- Jupyter-lab

Please suggest your favorite hacking tool so we can include it in the build.

Grateful Acknowledgement

Thank you to NMFTA for the support for this project.

Once completed, NMFTA members should have access to the UTHP.

Seeking beta testers to provide feedback.

Thank you

